
August, 2006

Advisor Answers

Using a framework

VFP 9/8/7

Q: I keep hearing about frameworks. What is a framework and why
would I want one?

A: The term "framework" is used in several different ways in the
computing world, but in the Visual FoxPro community, it generally

refers to a set of class libraries that provide the foundation for an
application. Although each application you write is different, most

applications require some basic things, such as conflict resolution, user
management, and error handling. A framework provides those basics

(and often, much more) so you can concentrate on the specifics of
your application.

Similarly, within an application, you want consistency so that data
entry forms work pretty much the same way regardless of what data

they address, and the technique for getting a report is the same across

the board, and so forth. Again, a framework makes this easier.

The truth is that most applications use a framework. The difference

among them is whether the framework was written by the developer
or purchased from a third party, and whether the framework was

planned or just happened.

Since it's clearly better to plan the architecture of an application than

to let it happen haphazardly, the real question is whether to buy a
framework or write your own. As with so many things in FoxPro, the

answer is "it depends."

There a number of commercial general purpose frameworks available

for VFP. The list includes Visual FoxExpress, Visual MaxFrame Pro,
Mere Mortals, Visual Extend, Visual ProMatrix, Codebook and

Codemine. VFP 6 and later also include a framework; it's used by the
Application Wizard. The various frameworks have lots in common and

lots of differences; you'll find a comparison of a number of them at

http://fox.wikis.com/wc.dll?Wiki~FrameworkFeatureChart.

The commercial frameworks typically include classes for handling data

(usually, an n-tier structure), several basic form classes, a set of

http://fox.wikis.com/wc.dll?Wiki~FrameworkFeatureChart

useful controls, a structure for user management and security and an

error handler. Many also include integration with other tools (such as
Stonefield Database Toolkit).

You can also build your own framework (a task I'm in the midst of
right now), but it's not for the faint of heart. A complete framework

includes a lot of code and requires a lot of testing.

The way you use a framework varies with the framework. Some

provide a comprehensive set of wizards and builders that guide you
through much of the work of creating an application. Others offer just

the class libraries together with documentation and you handle
construction manually.

So why would you use a commercial framework? There are a number
of reasons.

Frameworks save time. Although you have to invest a fair amount of
time becoming familiar with the framework, in the long run, it's time

well spent and probably much less than it would take you to build the

same functionality yourself.

Frameworks save money. This is the corollary to frameworks saving

time. Commercial frameworks cost a few hundred dollars. Building
your own framework costs hundreds of hours, so unless your time is

virtually worthless, even adding the time to learn the framework,
you're likely to save money.

Frameworks are well-tested. Not only have the developers of the
framework tested it, but framework code is in use in dozens, hundreds

or even thousands of applications, so the worst bugs have been caught
and fixed.

Frameworks are documented. At least any framework worth buying is
documented. That makes it easier to pass projects on to new

developers, and means that at least some of the code in your
application is documented.

Frameworks evolve. Most of the commercial frameworks for VFP are

still in active development. This means someone else will incorporate
new VFP and Windows features and provide improvements.

Frameworks teach. For the most part, the frameworks have been
written by VFP experts, so reading the code (most of them come with

full source) is a good way to learn how the pros do it.

Frameworks work around VFP bugs. Just about all of the commercial

frameworks for VFP are written by people who are beta testers for the
product and who have an intimate knowledge of the language. As a

result, they're likely to be more familiar with problems than the
average developer and know better how to work around those

problems.

Given the strength of those arguments, why would you build your own

framework?

In my case, I'm working with an existing application that doesn't use a

framework. I need to retrofit a framework into it. Doing that with one
of the commercial frameworks would be extremely difficult.

In addition, the commercial frameworks are fairly generic. If you're
building applications in a particular niche, it may be worth the time

and effort to build your own framework. (In fact, there are some
commercial frameworks available for building web applications with

VFP.)

You may also have intellectual property issues. If management
requires you to own all rights to the applications you produce, your

own framework is your only choice (and your management is short-
sighted, but that's a topic for another day).

Finally, you can learn a lot writing a framework. For me, doing this
after more than a decade with VFP, it's a chance to pull together a lot

of accumulated knowledge and to test some ideas about application
design.

The bottom line is that you should be using some framework, whether
you build or buy. Without a framework, you're producing an

application that will be extremely hard to maintain and is likely to be
inconsistent both internally and in its user interface. (If you're thinking

"I don't use a framework, but my application isn't like that," then you
probably are using a framework of your own design, but haven't

thought to call it that.)

It's your call whether to invest your time building your own framework
or learning one or more of the commercial frameworks. Whichever you

choose, it'll be time well spent.

–Tamar

